Exercise Sheet 11

Discussed on 07.07.2021

Problem 1. Let k be an algebraically closed field and C a proper smooth connected curve over k. We will assume that the relative Picard functor $\operatorname{Pic}_{C/k}^{0}$ is representable by a k-scheme which is locally of finite type. The goal is to show that $\operatorname{Pic}_{C/k}^{0}$ is an abelian variety of dimension g := g(C).

(a) Let X be a scheme. Show that there is a canonical bijection

$$\operatorname{Pic}(X) \cong H^1(X, \mathcal{O}_X^{\times}).$$

- (b) Show that the tangent space of $\operatorname{Pic}^{0}_{C/k}$ at 0 equals $H^{1}(C, \mathcal{O}_{C})$ and thus has dimension g.
- (c) Show that $\operatorname{Pic}_{C/k}^0$ is smooth over k.
- (d) Fix a point $P \in C(k)$. Show that there is a map $\varphi \colon C^g \to \operatorname{Pic}_{C/k}^0$ which on k-points is given by $(P_1, \ldots, P_g) \mapsto \mathcal{O}_C([P_1] + \cdots + [P_g] g[P])$.
- (e) Prove that the map φ is surjective. Deduce that $\operatorname{Pic}^0_{C/k}$ is proper and connected.